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Abstract
We construct a polynomial differential system that admits a given set of invariant
algebraic curves. For such a system we solve the Darboux problem (the
existence of the Darboux first integral), the Poincaré problem (the existence of
an upper bound for the degree of invariant algebraic curve) and study Hilbert’s
16th problem for algebraic limit cycles (the existence of an upper bound for
the number of algebraic limit cycles).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

By definition a real (complex) planar polynomial differential system or simply a polynomial
system is a differential system of the form{

ẋ = P(x, y)

ẏ = Q(x, y)
(1.0)

where the dependent variables x and y are real (respectively complex), the independent variable
(time t) is real and functions P and Q are polynomial in x and y with real (complex) coefficients.

We denote by n = max(deg P(x, y), deg Q(x, y)) the degree of the polynomial
system (1.0).

In this paper, we are mainly interested in the polynomial differential system which
possesses a given set of invariant algebraic curves.

We denote by R[x, y] the ring of real polynomial in x and y. An algebraic curve

g(x, y) = 0 g ∈ R[x, y]

is called an invariant algebraic curve of the system (1.0) if the following condition holds

P(x, y)∂xg(x, y) + Q(x, y)∂yg(x, y) = K(x, y)g(x, y)
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for some real polynomial K of degree at most n − 1. The function g is called a partial
integral.

In what follows the derivatives of g with respect to x and y are designated as ∂xg, ∂yg.

Many papers are dedicated to the study of polynomial planar vector fields with algebraic
solutions (see for instance [Darb, Poin, Baut, Sver, Dol, Reyn, Jouan, Kooij1, Kooij2, Christ,
Prelle, Qin, Valeeva]).

It is always helpful to look at this problem from another point of view. In this paper,
we take an alternative viewpoint of starting with a given set of algebraic invariant curves and
determining the form of the system which has such a set of invariant curves.

This point of view was firstly developed by Eruguin in the paper [Erug]. In this paper, the
author stated and solved the problem of constructing a planar vector field for which the given
curve is its invariant. He obtained the following result:

Proposition. The most general planar vector field for which

g(x, y) = 0

is its invariant curve is{
ẋ = ν(x, y)∂yg + a(x, y)

ẏ = −ν(x, y)∂xg + b(x, y)

where ν, a, b are arbitrary functions:{
a(x, y)∂xg + b(x, y)∂yg = �(x, y)

�(x, y)|g(x,y)=0 = 0.

These ideas were developed by Galiullin and his followers [Gal].
By applying the Eruguin–Galiullin ideas we state and study a new inverse problem in

the theory of ordinary differential equations [Ram, Sad1, Sad2]. We analyse the problem
of constructing a planar vector field with S � 1 invariant curves, in particular we study the
case when the given curves are algebraic. These ideas have been systematically developed in
[Sad2].

A similar problem was discussed in [Christ et al]. The authors study the polynomial
differential system in the plane which has a given invariant set of invariant algebraic curves.
They proved the following theorem.

Theorem 1 ([Christ et al]). Let Ci = 0 for i = 1, 2, . . . , p be irreducible invariant algebraic
curves in C2 and set r = ∑p

j=1 deg Ci. We assume that all Ci satisfy the following generic
conditions:

(i) There are no points at which Ci and its first derivatives are all vanished.
(ii) The highest order terms of Ci have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at this point.
(iv) There are no more than two curves Ci = 0 meeting at any point in the finite plane.
(v) There are no two curves having a common factor in the highest order terms.

Then any polynomial vector field X of degree m tangent to all Ci = 0 satisfies one of the
following statements.

(a) If r < m + 1 then

X =
(

p∏
i=1

Ci

)
Y +

p∑
i=1

hi


 p∏

j=1,j �=i

Ci


 XCi

(1.1)

where XCi
= (−Ciy, Cix) is a Hamiltonian vector field, hi are polynomials of degree no

more than m − r + 1, and Y is a polynomial vector field of degree no more than m − r .
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(b) If r = m + 1 then

X =
p∑

i=1

αi


 p∏

j=1,j �=i

Ci


 XCi

(1.2)

with αi ∈ C.

(c) If r > m + 1 then

X = 0.

The aim of this paper is to construct the most general (as possible) polynomial vector
field with given invariant algebraic curves and to analyse for the corresponding system of
differential equations the problem of the Darboux integrability, the Poincaré problem, Hilbert’s
16th problem for algebraic limit cycles.

In what follows a system composed of several systems, or a system with the same
additional conditions, given by the indexed formulae, will be presented as the union of the
correspondent expressions; i.e. if these expressions are indexed as (i, j), (k, l), . . . , (m, n)

then a new system which satisfies all these expressions will be designated as (i, j) + (k, l) +
· · · + (m, n).

2. Polynomial planar vector field of degree n with S � 2 invariant algebraic curve

In this section, we construct a planar polynomial vector field from a given set of algebraic
curves and establish the generality of the constructed differential system.

First of all we will introduce some notation and notions.
Let v be the vector field for which the algebraic curves

gj (x, y) = 0 j = 1, 2, . . . , S S � 2

are its invariants, i.e.

v(gj (x, y)) = Kj(x, y)gj (x, y) Kj ∈ R[x, y]. (2.1)

Definition 2.1. Given the set of the invariant functions of the vector field v,

g1, g2, . . . , gS S � 2

i.e. conditions (2.1) hold. If among these functions there exist at least two functions for which
the algebraic curve

(A) {g1, g2} ≡ ∂xg1∂yg2 − ∂yg1∂xg2 = 0 j = 1, 2, . . . , S

does not contain the trajectories of the vector field v, then we will say that the set of given
functions satisfies the condition (A).

Proposition 2.1. Suppose that g1, g2, . . . , gS, are functions which satisfy the condition (A).
Then the most general planar vector field of degree n with these functions as partial integrals,
is described by the system{

ẋ = µ1(x, y)g1(x, y){g2, x} + µ2(x, y)g2(x, y){x, g1}
ẏ = µ1(x, y)g1(x, y){g2, y} + µ2(x, y)g2(x, y){y, g1} (2.2)

with the following restrictions,

µ1g1{g2, gj } + µ2g2{gj , g1} + µjgj {g1, g2} = 0 (2.3)
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where µj , j = 1, 2, . . . , S are arbitrary rational functions:


ġj = {g1, g2}µjgj

{g1, g2}µj ∈ R[x, y]
deg({g1, g2}µj) � n − 1 j = 1, 2, . . . , S.

(2.4)

In fact, the vector field

v = µ1g1{, g2} − µ2g2{, g1} (2.5)

is generated by the system (2.2) and from (2.4) it follows that

v(gj ) = {g1, g2}µjgj j = 1, 2.

Hence, by considering (2.3), we deduce that

v(gj ) = µ1g1{gj , g2} − µ2g2{gj , g1} = µjgj {g1, g2} j = 2, 3, . . . , S

so the given functions are partial integrals of the vector field v.

To establish the fact that the constructed vector field v, under the condition (A) is the
most general we shall suppose that

w = X(x, y)∂x + Y (x, y)∂y

is another vector field which admits the given partial integrals, i.e.,

X(x, y){y, gj } − Y (x, y){x, gj }|gj =0 = 0 j = 1, 2, . . . , S.

By choosing the arbitrary functions µ1, µ2 as follows,

µjgj = X(x, y){y, gj } − Y (x, y){x, gj }
{g1, g2} j = 1, 2

and by inserting them into (2.5) we easily deduced that under the condition (A) the vector field
v coincides with w.

The following examples demonstrate the necessity of the condition (A) for the system
(2.2) + (2.3).

Example 2.1. The quadratic system{
ẋ = y(ax − b(y − 1)) + x2 + y2 − 1
ẏ = −x(ax − b(y − 1)) + a(x2 + y2 − 1)

which admits the invariant curves

y − 1 = 0 x2 + y2 − 1 = 0

cannot be obtained from (2.2). The function

{x2 + y2 − 1, y − 1} = 2x

vanishes at the point (0, 1) which is the trajectory of the quadratic vector field.

Example 2.2. When the given algebraic curves are

g1(x, y) = xy − 1 = 0 g2(x, y) = y + 1 = 0 g3(x, y) = y = 0

then it is evident that condition (A) does not hold because

{xy − 1, y + 1} = y.

The system (2.2) + (2.3) takes the following form:


ẋ = µ2(x, y)(y + 1)x + µ1(x, y)(xy − 1)

ẏ = −µ2(x, y)(y + 1)y

µ2(x, y)(y + 1) = −µ3(x, y)y.
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It is clear that this differential system has the given invariant curves for any polynomial µ2.
This fact is not compatible with the last equation.

In [Christ et al] the following result was proposed:
“Let gj (x, y) = 0 for j = 1, 2, . . . , S be different irreducible invariant algebraic curves

of system (1.0) with deg gj (x, y) = cj . Assume that gj satisfy the conditions (i), (iii) and (iv)
of theorem 1.

Then
(a) if (∂xgj , ∂ygj ) = 1 for j = 1, 2, . . . , S then system (1.0) has the normal form



ẋ =

A0 −

S∑
j=1

Aj∂ygj (x, y)

gj (x, y)


 S∏

k=1

gj (x, y)

ẏ =

B +

S∑
j=1

Aj∂xgj (x, y)

gj (x, y)


 S∏

k=1

gj (x, y)

(2.6)

where B,A0 and Aj are suitable polynomials . . . ”.
The relation between the model proposed in [Christ et al] and the model proposed by us

is established in the following consequence.

Corollary 2.1. The system


ẋ =
S∑

j=1

hj (x, y)

S∏
k �=j

gk{gj , x} +
hS+2

{g1, g2}
S∏

k=1

gk ≡ P(x, y)

ẏ =
S∑

j=1

hj (x, y)

S∏
k �=j

gk{gj , y} − hS+1

{g1, g2}
S∏

k=1

gk ≡ Q(x, y)

(2.7)

is a particular case of the system (2.2) + (2.3), where gS+1 = x, gS+2 = y,h1, . . . , hS+2 are
arbitrary polynomials such that

n = max(deg P, deg Q).

In fact, by considering the identity

{gk, gj}{gi, gm} + {gk, gm}{gj , gi} + {gk, gi}{gm, gj} = 0

we see that the polynomials

gjµj (x, y){g1, g2} =
S+2∑
m=1

hm{gm, gj}
S∏

k �=m

gk j = 1, 2, . . . , S

are solutions of (2.3). By inserting these polynomials into (2.2) we obtain the system (2.7).

Corollary 2.2. The system (2.7) coincides with the system (2.6). In fact, if we introduce the
following denotation,

hj = Aj j = 1, 2, . . . , S hs+1 = −{g1, g2}B, hS+2 = {g1, g2}A0

we obtain the differential system (2.6).

The following two examples show that the system (2.2) + (2.5) is more general than the
model proposed in [Christ et al].
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Example 2.3. The system{
ẋ = 3µ3(x, y)(y − 1) − µ2(x, y)(4x + 3y + 5)

ẏ = −4µ3(x, y)(y − 1)

has as particular integrals the functions

g1(x, y) = x2 + y2 − 1 g2(x, y) = 4x + 3y + 5 g3(x, y) = y − 1

iff the following condition holds

4µ1g1 − 2xµ2g2 + 2(3x − 4y)µ3g3 = 0. (2.8)

By considering that

{4x + 3y + 5, y − 1} = 4

we can see that the condition (A) in this case holds.
After some calculations we can prove that


µ1 = 2(x + 2y)

µ2 = 2y + x − 2

µ3 = x + 2y + 2

(2.9)

satisfies (2.8). For this case the constructed differential system is transformed into the quadratic
system, {

ẋ = (2x − y + 1)y + x2 + y2 − 1

ẏ = −(2x − y + 1)x + 2(x2 + y2 − 1)
(2.10)

which cannot be obtained from (2.6) [Christ et al] .

Example 2.4. The system


ẋ = µ1(x, y)x

ẏ = µ2(x, y)y

µ1(x, y)x + µ2(x, y)y − µ3(x, y)(x + y) = 0

has as partial integrals the functions


g1 = x

g2 = y

g3 = x + y

which satisfy the condition (A).
Evidently,


µ1 = b(x, y)y + a(x, y)

µ2 = −b(x, y)x + a(x, y)

µ3 = a(x, y)

are solutions of the above equation, where a and b are suitable polynomials of degree n − 2
and n − 1 respectively.

Hence we obtain the polynomial system of degree n:{
ẋ = x(b(x, y)y + a(x, y))

ẏ = y(−b(x, y)x + a(x, y)).
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In the case when

a(x, y) = 1 + x + x2 + xy + y2 b(x, y) = 1 − y

we obtain the cubic system [Christ et al]{
ẋ = x(1 + x + x2 + y + yx)

ẏ = y(1 + x2 + 2xy + y2).

In all statements below we restrict ourselves only to the particular case when the functions
µj , j = 1, 2, . . . , S, are{

µj ∈ R[x, y]

deg(µj ) � n − 1 − r r = deg({g1, g2}).
(2.11)

Now we will study the Darboux integrability and the Poincaré problem for the system
(2.2) + (2.3) + (2.11).

3. Darboux integrability and the Poincaré problem for the differential system (2.2) +
(2.3) + (2.11)

In this section, we solve the problem of the Darboux integrability and the Poincaré problem
for the system constructed above.

3.1. Darboux integrability

Proposition 3.1. Let us consider the polynomial system (2.2) + (2.3) + (2.11) of degree
n. Let us suppose that this system admits S algebraic particular integrals gj (x, y) with
j = 1, 2, . . . , S, which are irreducible. Let

dimRRn−r−1[x, y] r = deg{g1, g2}
be the dimension of the real space

Rn−r−1[x, y]

of polynomials of degree at most n − r − 1 in the independent variables x and y and let us
suppose that

S > dimRRn−r−1[x, y] = 1
2 (n − r)(n + 1 − r).

Then the function

F(x, y) =
S∏

j=1

|gj |λj

is the first integral of this system (Darboux first integral), where λ1, λ2, . . . , λS are constants
and at least one of them is nonzero.

The proof is similar to the proof of the classical Darboux theorem [Darb, Christ, Chav].
The differential system, which admits a Darboux first integral is called Darboux integrable.
From proposition 3.1 we obtain the following consequences.

Corollary 3.1. Suppose that in (2.2) + (2.3) + (2.11) the number r = n − 1, then the
constructed polynomial vector field is Darboux integrable.
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In fact, the function

F(x, y) = |g1|λ1

|g2|λ2

where µ1 = µ0
1, µ2 = µ0

2 are constants, µ0
1λ1 + µ0

2λ2 = 0 is Darboux first integral.

Proposition 3.2. The system (2.2) + (2.3) is Darboux integrable iff µ1, µ2 are such that

gmµm(x, y) = ν(x, y)

S∑
j=1

λj {gj , gm}
S∏

k �=j

gk m = 1, 2 S � 2 (3.1)

where λj , j = 1, 2, . . . , S are constant, ν is an arbitrary rational function:

0 � deg({g1, g2}µm) � n − 1 m = 1, 2.

The proof is the following.
Suppose that F is the first integral of (2.2) + (2.3). Then the polynomials µ1, . . . , µS

satisfy the relations
S∑

j=1

λjµj = 0.

Therefore we obtain the following equalities if S > 2:
S∑

j=1

λjµj = λ1µ1 + λ2µ2 +
S∑

j=3

λj

(
µ1g1

{gj , g2}
gj {g1, g2} + µ2g2

{g1, gj }
gj {g1, g2}

)

= µ1g1

{g1, g2}


λ1

{g1, g2}
g1

+
S∑

j=3

λj

{gj , g2}
gj




− µ2g2

{g1, g2}


λ2

{g2, g1}
g2

+
S∑

j=3

λj

{gj , g1}
gj




=
µ1g1

(∑S
j=1 λj {gj , g2}

∏S

k=1
k �=j

gk

) − µ2g2
(∑S

j=1 λj {gj , g1}
∏S

k=1
k �=j

gk

)
{g1, g2}

∏S
k=1 gk

= 0.

From here we can trivially deduce the required representation for µj , j = 1, 2.

In the case when S = 2 we have
2∑

j=1

λjµj = 0

hence

µ1 = a(x, y)λ2 µ2 = −a(x, y)λ1

where a is an arbitrary rational function. In particular, if

a(x, y) = ν(x, y){g1, g2}
then we obtain formula (3.1).
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The reciprocity can be obtained as follows.
Let µ1, µ2 be polynomials determined by (3.1). We will prove that in this case the system

(2.2) + (2.3) admits Darboux first integral F.

In fact, by inserting µj , j = 1, 2 in (3.2) we get the equations


ẋ = ν(x, y)

S∑
j=1

λj

S∏
k=1
k �=j

gk({gj , g1}{x, g2} + {gj , g2}{g1, x})

ẏ = ν(x, y)

S∑
j=1

λj

S∏
k=1
k �=j

gk({gj , g1}{y, g2} + {gj , g2}{g1, y}).

By taking into consideration the identity

{gk, gj }{gi, gm} + {gk, gm}{gj , gi} + {gk, gi}{gm, gj } = 0

we obtain

{gj , g1}{x, g2} + {gj , g2}{g1, x} = {g1, g2}{gj , x}
{gj , g1}{y, g2} + {gj , g2}{g1, y} = {g1, g2}{gj , y}.

Hence, the above equations take the form


ẋ = ν(x, y){g1, g2}
S∑

j=1

λj {gj , x}
S∏

k=1
k �=j

gk

ẏ = ν(x, y){g1, g2}
S∑

j=1

λj {gj , y}
S∏

k=1
k �=j

gk

or equivalently,


ẋ = ν(x, y){g1, g2}
S∏

k=1

gk

S∑
j=1

λj

{gj , x}
gj

= −ν(x, y){g1, g2}
S∏

k=1

gk

S∑
j=1

λj

∂ygj

gj

ẏ = ν(x, y){g1, g2}
S∏

k=1

gk

S∑
j=1

λj

{gj , y}
gj

= ν(x, y){g1, g2}
S∏

k=1

gk

S∑
j=1

λj

∂xgj

gj

.

By considering the following expressions,


S∑
j=1

λj

∂ygj

gj

= ∂y ln
S∏

j=1

|gj |λj

S∑
j=1

λj

∂xgj

gj

= ∂x ln
S∏

j=1

|gj |λj
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and introducing the functions


F(x, y) =
S∏

j=1

|gj |λj

V (x, y) = −ν(x, y){g1, g2}
S∏

k=1

gk

finally we obtain the system{
ẋ = V (x, y)∂y ln F

ẏ = −V (x, y)∂x ln F

so the function F is a first integral of (2.2).
It is easy to show that the function V satisfies the equation

V̇ = {V, ln F }V.

From this relation and the result given in [Gorb, Giancomini et al] we can deduce the
condition for the existence of the periodical solution for the Darboux integrable differential
system (2.2) + (2.3) + (2.11).

Example 3.1. The quadratic system (2.10) is Darboux integrable. In fact, in this case we
have, from (3.1), that

µ1 = −2(y − 2x − 2)ν(x, y)(2x + 4y)

µ2 = −2(y − 2x − 2)ν(x, y)(x + 2y − 2)

µ3 = −2(y − 2x − 2)ν(x, y)(x + 2y + 2)

if

−λ1 = λ2 = λ3 = 1.

Hence we obtain that

ν(x, y) = 1

4x − 2y + 4
.

The function

F(x, y) = (y − 1)(4x + 3y + 5)

(x2 + y2 − 1)

is a Darboux’s first integral of the system (2.10).

Example 3.2. We will construct the polynomial vector field of degree 5 with the following
set of partial integrals:{

g1 ≡ x − 1 g2 ≡ x + 1 g3 ≡ x − (
√

5 − 2) g4 ≡ x + (
√

5 − 2)

g5 ≡ y − 1 g6 ≡ y + 1 g7 ≡ y − (
√

5 − 2) g8 ≡ y + (
√

5 − 2).

This set of functions satisfies the condition (A), because

{x − 1, y − 1} = 1.

The functions µ1, µ2 ≡ µ5 are polynomials of the maximal degree 4 and are such that{
µ1 = (ax + by + c)(x + 1)(x2 − (

√
5 − 2)2)

µ5 = (Ax + By + C)(y + 1)(y2 − (
√

5 − 2)2).
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The differential equations (3.2) take the form{
ẋ = (ax + by + c)(x2 − 1)(x2 − (

√
5 − 2)2)

ẏ = (Ax + By + C)(y2 − 1)(y2 − (
√

5 − 2)2).

From proposition 3.2 we deduce that the system is Darboux integrable iff


µ1(x, y) = ν(x, y)

8∏
k �=1

(y − aj )(x − aj )

8∑
j=5

λj

y − aj

µ2(x, y) = ν(x, y)

8∏
k �=2

(y − aj )(x − a − j)

4∑
j=1

λj

x − aj

a1 = 1 a2 = −1 a3 = 2 −
√

5 a4 =
√

5 − 2.

By comparing the above system with (3.1), we obtain after some calculations


ν(x, y)

8∑
j=5

λj

y − aj

= ax + by + c∏8
k=5(y − aj )

ν(x, y)

4∑
j=1

λj

x − aj

= Ax + By + C∏4
k=1(x − aj )

.

Hence, a = B = 0, ν(x, y) = 1 and

λj = Aaj + C∏
k �=j (ak − aj )

λj+4 = baj + c∏
k �=j (ak − aj )

j = 1, 2, 3, 4.

The Darboux first integral is the following:

F(x, y) =
4∏

j=1

|y − aj |Aaj +C |x − aj |baj +c.

It is evident that if aB �= 0 then the constructed differential system is not Darboux integrable.
In particular, if we select{

a = 1 b = √
5 c = 0

A = √
5 B = 1 C = 0

then we obtain the system given in [Art et al]:{
ẋ = (x +

√
5y)(x2 − 1)(x2 − (

√
5 − 2)2)

ẏ = (
√

5x + y)(y2 − 1)(y2 − (
√

5 − 2)2).

This system is not Darboux integrable and has 14 invariant straight lines

g9 ≡ y + x = 0 g11 ≡ y + kx + (1 − k) = 0 g13 ≡ y +
x

k
+

1 − k

k
= 0

g10 ≡ y − x = 0 g12 ≡ y + kx − (1 − k) = 0 g14 ≡ y +
x

k
− 1 − k

k
= 0

where k = (
√

5−1)

2 .
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3.2. The Poincaré problem

We proceed with the study of the Poincaré problem for the system (2.2) + (2.3) + (2.11), of
the existence of the upper bound of the degrees of the invariant algebraic curves [Carn].

If we suppose that the system (2.2) + (2.3) is Darboux integrable, then, in general, there
does not exist an upper bound of the degrees of invariant algebraic curves.

In fact, the quadratic system{
ẋ = x(p0(m − 1)y + p1mx + p2m)

ẏ = y(p0ky + p1(k + 1)x + p2k)

admits the invariant curve

ym + p0yxk + p1x
k+1 + p2x

k = 0

of arbitrary degree l = max(m, k + 1).

It is easy to show that

F(x, y) = ym + p0yxk + p1x
k+1 + p2x

k

ym

is a Darboux first integral [Sad1].

Proposition 3.3. Suppose the system (2.2) + (2.3) + (2.11) is not Darboux integrable. Then

1 � deg(gj ) � n j = 1, 2 . . . , S S � 2.

In fact, let us assume that the given polynomials g1, g2 are of the degree m and k, respectively,
and admit the representations{

g1(x, y) = xm1ym2 + · · · m1 + m2 = m

g2(x, y) = xk1yk2 + · · · k1 + k2 = k.

By inserting these expressions into equations (3.2) we obtain{
ẋ = (µ2m2 − µ1k2)x

m1+k1ym2+k2−1 + · · · = P(x, y)

ẏ = (µ1k1 − µ2m1)x
m1+k1−1ym2+k2 + · · · = Q(x, y)

therefore we deduce that

m1 + k1 − 1 + m2 + k2 = m + k − 1 � n

and hence deg(gj ) � n.

Of course, if{
µ2m2 − µ1k2 = 0

µ1k1 − µ2m1 = 0

then the system is Darboux integrable.

Example 3.3. Let us consider the following functions,

g1(x, y) = x − a g2(x, y) = εxn + G(x, y)

where G is a polynomial of degree n − 1:{{g1, g2} = ∂yG(x, y)

deg ∂yG(x, y) = n − 2.
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The polynomial vector field of degree n{
ẋ = (Ax + By + C)(x − a)∂yg2(x, y)

ẏ = −(Ax + By + C)(x − a)∂xg2(x, y) + (β + n(Ax + By + C))g2(x, y)
(3.2)

is not Darboux integrable iff Bβ �= 0, where A,B,C, β, a are real constants such that

A(C + Aa) �= 0.

In fact if B = 0 then the system (3.2) admits three partial algebraic integrals, after some
calculations we can prove that

F(x, y) = |εxn + G(x, y)|C+Aa|x − a|β−n(Aa+C)|Ax + C|−Aβ

is the first integral of (3.2).
Let us suppose that (3.2) admits only two partial algebraic integrals g1, g2 and is Darboux

integrable, i.e., there are numbers λ1, λ2 such that

λ1µ1 + λ2µ2 = 0

then, as a consequence we obtain

µ1 = −a(x, y)λ2 µ2 = a(x, y)λ1.

On the other hand,

µ1 = (Ax + By + C)∂yg µ2 = (β + n(Ax + By + C))∂yg

hence if β = 0 then

a(x, y) = (Ax + By + C)∂yg λ1 = −n λ2 = 1

and, as a consequence,

F(x, y) = (εxn + G(x, y))

(x − a)n

is a Darboux first integral.

4. The Hilbert 16th problem for algebraic limit cycles

In this section, we determine an upper and a lower bound for number of algebraic limit cycles
for the non-Darboux integrable differential system (2.2) + (2.3) + (2.11).

Hilbert’s 16th problem requires that the following problems are studied [Hil]:

(I) The ovals of the algebraic curves.
(II) The limit cycles of the polynomial planar vector field (to establish an upper bound for the

number of limit cycles).

The part II of Hilbert 16th problem is now a days formulated as follows [Smal]: ‘Consider
the differential equation in R2{

ẋ = P(x, y)

ẏ = Q(x, y)

where P and Q are polynomials. Is there a bound K of the number of limit cycles of the form

K � nq

where n is the maximum of degrees of P and Q and q is a universal constant?’
There are also studies concerning an intermediate problem related to the upper bound of

the number of limit cycles which can be generated from the Hamiltonian polynomial vector
field after small polynomial perturbations. We will call this problem III.
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The progress made towards solving problem II can be summarized by the following
results:

Ilyashenko and Ecalle provided a correct proof of Dulac’s theorem: “Every polynomial
vector field has a finite number of limit cycles.”

Nothing is known about the existence of an upper bound even for quadratic vector fields.
As far as problem III is concerned, the number of limit cycles of the polynomial planar

vector field is closely related to the number of isolated zeros of the Abelian integral (the
weakened Hilbert 16th problem.)

Varchenko and Khovansky gave the second important result. They proved that there is a
number N (n) such that the number of zeros of the Abelian integral does not exceed N (n).

But even when n = 2 no explicit bound for N (n) is known.
The aim of this section is to study problem II when the limit cycles are algebraic [Baut,

Qin].
As we observe in the introduction, there are a considerable number of studies which

discuss the problem related to the algebraic solutions of the polynomial vector field (see, for
instance, [Darb, Poin, Baut, Dol, Jouan, Koij1, Koij2, Christ et al]).

To solve the 16th Hilbert problem for algebraic limit cycles for the polynomial planar
vector field it is necessary

(i) to determine the upper bound for the degree of the invariant irreducible algebraic curve
g(x, y) = 0 (the Poincaré problem),

(ii) to construct the polynomial planar vector field with a fixed degree for which the given
algebraic curve of the maximal degree with the maximal number of ovals is its invariant.

Of course, if the invariant algebraic curve of the polynomial system has m ovals then the
system has usually m limit cycles [Sver]. Harnack’s theorem claims that the maximum number
of ovals of real algebraic curves of degree m is 1

2 (m − 1)(m − 2) + 1. So we obtain that the
maximal number of algebraic limit cycles which the polynomial planar vector field can admit
is equal to or greater than 1

2 (m − 1)(m − 2) + 1, where m is the degree of the invariant curve.
In the paper [Shi] the author affirms “Another artificial example is constructed as follows.

We consider an algebraic curve g(x, y) = 0, where g is a polynomial of degree n in x, y.
Suppose that this curve has M ovals. Then, the system{

ẋ = ∂yg(x, y)

ẏ = −∂xg(x, y) + g(x, y)

has usually M algebraic limit cycles. For detail and more precision, see Sverdlov’s paper.”
It is evident that this system admits the following first integral which is analytic in the

plane:

F(x, y) = g(x, y) e−x .

Let us denote by

A(n, S)

the maximal number of the algebraic limit cycles that the polynomial system (2.2) + (2.3) +
(2.11) of degree n with S invariant irreducible algebraic curves can admit.

The aim of the assertions below is to determine a lower and an upper bound (when S > 2)
for A(n, S).
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4.1. A lower bound for A(n, 1)

Let V be a function

V (x, y) =
∫ n−1∏

j=1

(y − bj ) dy +
n−1∏
j=1

(x − aj ) dx

where

b1 < b2 < · · · < bn−1

a1 < a2 < · · · < an−1.

Now we will study the system{
ẋ = (Ax + By + C)∂yV (x, y) ≡ P(x, y)

ẏ = −(Ax + By + C)∂xV (x, y) + ε(V (x, y) − c0) ≡ Q(x, y)
(4.1)

for which the curve

V (x, y) = c0 (4.2)

is its invariant curve, where A,B,C, ε, c0 are certain real parameters.

Proposition 4.1. There are values of the parameters A,B,C, ε, c0 and bj , aj , j =
1, 2, . . . , n − 1 for which system (4.1) admits 1

2 (n − 1)(n − 2) + 1 algebraic limit cycles
when n is even and 1

2 (n − 1)(n − 2) when n is odd, i.e.

A(n, 1) �
{

1
2 (n − 1)(n − 2) + 1 if n is even
1
2 (n − 1)(n − 2) if n is odd.

In fact there are values of the parameters aj , bj , c0, j = 1, 2, . . . , n − 1 for which the
curve (4.2) admits these numbers of ovals.

If we denote by (xj , bj ) the point on the plane such that

−(Ax + Bb + C)∂xV (x, y) + ε(V (x, y) − c0)|x=xj,y=bj
= 0.

Then, by choosing the free parameters in such a way that the value of the Liapunov quantities{
σ(x, y) = ∂xP (x, y) + ∂yQ(x, y)

�(x, y) = ∂xP (x, y)∂yQ(x, y) − ∂yP (x, y)∂xQ(x, y)
(4.3)

at some of the critical points which are in the interior of the ovals, we can see that the next
inequality holds

�(xj , bj ) > 0 σ 2(xj , bj ) − 4�(xj , bj ) < 0.

From these conditions we can construct the polynomial vector field of degree n with the
indicated numbers of algebraic limit cycles.

Obviously, if Bε = 0 then there is a first integral. In fact if ε = 0 then V is an analytic
first integral, if B = 0 then

F(x, y) = |V (x, y) − c0|A∣∣x + C
A

∣∣ε
is a Darboux first integral, where A �= 0.

Example 4.1. The quadratic system{
ẋ = (Ax + By + C)y

ẏ = −(Ax + By + C)x + ε(x2 + y2 − c0)

admits one algebraic limit cycle for some values of the parameters.
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4.2. A lower bound for A(n, 2)

Proposition 4.2. Let us suppose that the straight line x − a = 0 does not intersect the ovals
of the curve

εxn + G(x, y) = 0 n � 3.

Then there are values of the parameters A,B,C, β, a, ε for which system (3.2) admits
1
2 (n − 1)(n − 2) + 1 algebraic limit cycles when n is odd and 1

2 (n − 1)(n − 2) when n is
even, i.e.,

A(n, 2) �
{ 1

2 (n − 1)(n − 2) + 1 if n is even

1
2 (n − 1)(n − 2) if n is odd.

The case when ε = 0 was studied in [Dol]. The authors of this paper proved that the
polynomial vector field of degree n{

ẋ = (x − a)∂yG(x, y)

ẏ = −(x − a)∂xG(x, y) + (Ax + By + C)G(x, y) B �= 0

where deg G = n − 1 admits 1
2 (n − 2)(n − 3), or 1

2 (n − 2)(n − 3) + 1 algebraic limit cycles
if n is even or odd respectively.

4.3. An upper bound for A(n, S)

Proposition 4.3. Let us suppose that the system (2.2) + (2.3) + (2.11) is not Darboux integrable,
then {

A(n, S) � 1
4 (n2 − 3n + 4)(n − r)(n − r + 1)

1 � r = deg{g1, g2} � n − 2.
(4.4)

In fact, from proposition 3.1 we have that, if the polynomial system is not Darboux integrable,
then the maximal number of the algebraic invariant curves is

2 � S � 1
2 (n − r)(n + 1 − r).

If we denote by Kj and mj the number of ovals and the degree of the polynomial gj (x, y)

then from the Harcnack theorem and proposition 3.3 we get that

Kj � 1
2

(
m2

j − 3mj + 4
)

� 1
2 (n2 − 3n + 4)

hence,

A(n, S) �
S∑

j=1

Kj � 1

2
(n2 − 3n + 4)S.

From here we easily deduce the following consequence.

Corollary 4.1. For r = n − 2, we have that

1
2 (n − 1)(n − 2) + 1 � A(n, 2) �

{
1
2 (n − 1)(n − 2) + 1 if n is even
1
2 (n − 1)(n − 2) if n is odd.

Corollary 4.2. A(n, 2) = 1
2 (n − 1)(n − 2) + 1 if n is even.
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Conjecture.

A(n, 2) = 1
2 (n − 1)(n − 2) + 1 ∀n ∈ N

Corollary 4.3.

A(3, 2) = 2.

In fact, from corollary 4.1 we have that 1 � A(3, 2) � 2.

On the other hand, the cubic system{
ẋ = (F0(x, y) − Fa(x, y))y

ẏ = −(F0(x, y) − Fa(x, y))x + aF0(x, y)

admits two limit cycles

x2 + y2 = r2

(x − a)2 + y2 = r2 a > 2r

where Fa(x, y) = (x + y − a)((x − a)2 + y2 − r2).

4.4. A lower bound for A(n, n − 1)

Now we will construct a polynomial vector field of degree n with n−1 invariant circumferences,
therefore, we will show that

A(n, n − 1) � n − 1.

The aim of the next assertions is to study the particular case when all the invariant curves
of (2.2) + (2.3) are

gj (x, y) = 1
2 ((x − aj )

2 + y2) − r2
j j = 1, 2, . . . , S (4.5)

where a1 �= a2, a3, . . . , aS and r1, r2, . . . , rS are real constants.

Proposition 4.4 ([Sad2]). In the case when{
a1 = al+2 = · · · = aS

a2 = a3 = · · · = al+1

the polynomials µj , j = 1, 2, . . . , S, admit the representation


µj(x, y) = Pk1(x, y)

S∏
k=1,l+2,k �=j

(
g1 + r2

1 − r2
k

)
j = 1, l + 2, . . . , S

µj (x, y) = Pk2(x, y)

l+1∏
k=2,k �=j

(
g2 + r2

2 − r2
k

)
j = 2, . . . , l + 1

(4.6)

where Pkj
(x, y), j = 1, 2, are arbitrary polynomials of degree k1, k2:

k1 � n − 2(S − l) k2 � n − 2l. (4.7)

In fact, from conditions (2.2) + (4.5) we obtain that

(a1 − a2)(µ1g1 − µjgj ) = 0 j = l + 2, . . . , S

(a1 − a2)(µ2g2 − µjgj ) = 0 j = 3, . . . , l + 1

hence, we have easily obtained (4.6).
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Corollary 4.4. The system (2.2) + (2.3) + (4.5) is Darboux integrable iff


µ2(x, y) = K2
(
g1 + r2

1

) l+1∏
k=3

(
g2 + r2

2 − r2
k

)

µ1(x, y) = K1
(
g2 + r2

2

) S∏
k=l+2

(
g1 + r2

1 − r2
k

)
where K1,K2 are arbitrary polynomials:

deg µj � n − 2 j = 1, 2.

The Darboux first integral is the following [Sad2],

F(x, y) =
S∏

k=1

|gj |λj

where λj , j = 1, 2, . . . , S are constant:


λj = K2
(
r2
j

)
∏S

k=1,l+2

(
r2
k − r2

j

) j = 1, l + 2, . . . , S

λj = K1
(
r2
j

)
∏l+1

k=2,k �=j

(
r2
k − r2

j

) j = 2, . . . , l + 1.

(4.8)

Proof. From (3.1) + (4.6) it follows that


l+1∑
j=2

λj

R2
2 − r2

j

= K2(x, y)∏l+1
j=2

(
R2

2 − r2
j

)
S∑

j=1,l+2

λj

R2
1 − r2

j

= K1(x, y)∏S
j=1,l+2

(
R2

2 − r2
j

)
where

Kj(x, y) = Pkj

(a2 − a1)ν(x, y)y

R2
j = (x − aj )

2 + y2 j = 1, 2.

Hence, we easily deduced (4.8). �

Let us study the case when the circumferences are centred at the points (0, 0) and (a, 0).

Corollary 4.5. Let us suppose that


n = 2l + 1
S = n − 1 = 2l

a1 = al+2 = al+3 = · · · = a2l = 0
a2 = a3 = · · · = al+1 = a

(4.9)

then polynomials µ1, µ2, . . . , µ2l are such that
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µj(x, y) = (αx + βy + γ2)

l+1∏
k=2,k �=j

gk(x, y)

µj+l (x, y) = (αx + βy + γ1)

2l+1∏
k=l+2,k �=j+l

gk(x, y)

µ2l+1 ≡ µ1 g2l+1 ≡ g1 j = 2, . . . , l + 1

where α, β, γ1, γ2 are arbitrary constants.

The proof follows from (4.6) + (4.7) by taking into consideration the fact that the
polynomials Pkj

, j = 1, 2 are such that

kj � 1 j = 1, 2

i.e.,

Pkj
= αjx + βjy + γj j = 1, 2.

To construct the polynomial vector field of degree n with the partial integrals (4.5) + (4.8)
it is necessary that the constants α1, α2β1, β2 satisfy the following conditions:

α1 = α2 ≡ α β1 = β2 ≡ β.

Under these conditions we obtain that the polynomial vector field of degree n is the
following: 



ẋ = 2y


(αx + βy + γ1)g1

2l∏
j=l+2

gj − (αx + βy + γ2)

l+1∏
j=2

gj




ẏ = −2x


(αx + βy + γ1)g1

2l∏
j=l+2

gj − (αx + βy + γ2)

l+1∏
j=2

gj




+ 2(αx + βy + γ1)g1

2l∏
j=l+2

gj .

The constants α, β, γ1, γ2 are determined in such a way that

(1) the straight lines αx + βy + γj = 0, j = 1, 2 do not intersect the circumferences,
(2) all the critical points have the ordinate zero and do not lie on the circumferences,
(3) the vector field has a finite number of critical points.

Hence γ1 �= γ2.

We will study the following two cases:

(1) γ1 = 0 γ2 = −aα

(2) α = 1
2 β = 0 γ1 = −γ2 = 1

2γ > r2l

where r2l is the largest radius.
In the first case the above vector field takes the form



ẋ = 2y


(αx + βy)g1

2l∏
j=l+2

gj − (α(x − a) + βy)

l+1∏
j=2

gj




ẏ = −2


(x − a)(αx + βy)g1

2l∏
j=l+2

gj − (α(x − a) + βy)x

l+1∏
j=2

gj


 .
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We will study the subcase when{
α = β = 1

2

r1 = r2 rj = rl+(j−1) j = 3, . . . , l + 1.

Designating by Fa(x, y), F0(x, y) the following polynomials,


Fa(x, y) = (x + y − a)

l+1∏
j=2

(
(x − a)2 + y2 − r2

j

)
l � 1

F0(x, y) = Fa(x, y)|a=0

we can deduce that the above vector field takes the form{
ẋ = (F0(x, y) − Fa(x, y))y = P(x, y)

ẏ = −(F0(x, y) − Fa(x, y))x + aF0(x, y) = Q(x, y).

This system has the following properties.
(1) It has only three critical points in the finite plane R2,

(0, 0)
(a

2
, 0

)
(a, 0).

(2) The Liapunov quantities (4.3) for the system are
(i) {

σ(0, 0) = σ(a, 0)


(0, 0) = 
(a, 0).

(ii)


σ(0, 0) = (−1)la

l∏
j=1

r2
j


(0, 0) = a2
l∏

j=1

l
(
a2 − r2

j

) 
 l∏

j=1

(
a2 − r2

j

) − (−1)l
l∏

j=1

r2
j




σ 2(0, 0) − 4
(0, 0) = a2





2

l∏
j=1

(
a2 − r2

j

) − (−1)l
l∏

j=1

r2
j




2

− 8


 l∏

j=1

(
a2 − r2

j

)
2






σ
(a

2
, 0

)
= a

l∏
j=1

((a

2

)2
− r2

j

)



(a

2
, 0

)
= −a4

2

l∏
j=1

((a

2

)2
− r2

j

) l∑
l=1

l∏
j=1,j �=l

((a

2

)2
− r2

j

)
.

The circumferences are not intersected if

rj < a/2 j = 1, . . . , l

so



(a

2
, 0

)
< 0

and, as a consequence the critical point
(

a
2 , 0

)
is a saddle.
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It is evident that the other critical points are the stability or non-stability foci depending
on whether k is odd or even.

The second case can be analysed analogously. The constants can be chosen as follows,

α = 1
2 β = 0 γ1 = −γ2 = 1

2γ > r2l

where r2l is the greater ratio.
Under these conditions the constructed vector field takes the form



ẋ = y


(x + γ )g1

2l∏
j=l+2

gj − (x − γ )

l+1∏
j=2

gj




ẏ = −x


(x + γ )g1

2l∏
j=l+2

gj − (x − γ )

l+1∏
j=2

gj


 + (x + γ )g1

2l∏
j=l+2

gj .

Hence, S = n−1 given circumferences are isolated periodical solutions of the polynomial
vector field, i.e., are algebraic limit cycles.

From the above it follows that

A(n, n − 1) � n − 1.
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